A unified deep artificial neural network approach to partial differential equations in complex geometries

نویسندگان

  • Jens Berg
  • Kaj Nyström
چکیده

We use deep feedforward artificial neural networks to approximate solutions of partial differential equations of advection and diffusion type in complex geometries. We derive analytical expressions of the gradients of the cost function with respect to the network parameters, as well as the gradient of the network itself with respect to the input, for arbitrarily deep networks. The method is based on an ansatz for the solution, which requires nothing but feedforward neural networks, and an unconstrained gradient based optimization method such as gradient descent or quasi-Newton methods. We provide detailed examples on how to use deep feedforward neural networks as a basis for further work on deep neural network approximations to partial differential equations. We highlight the benefits of deep compared to shallow neural networks and other convergence enhancing techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

متن کامل

Kinematic Synthesis of Parallel Manipulator via Neural Network Approach

In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...

متن کامل

APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

متن کامل

Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations

We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this second part of our two-part treatise, we focus on the problem of data-driven discovery of partial differential equations. Depending on whether the available data is sca...

متن کامل

The Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks

Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06464  شماره 

صفحات  -

تاریخ انتشار 2017